pythonwhat Documentation
Release 2.23.0

DataCamp

Jan 30, 2020

Glossary

10

11

12

13

Glossary

Reference

Tutorial

Checking function calls

Make your SCT robust
Checking through string matching
Checking compound statements
Expression tests

Processes
SingleProcessExercise

Electives

Test to Check

Tests

Python Module Index

Index

47

53

61

65

69

73

79

83

87

91

95

383

385

pythonwhat Documentation, Release 2.23.0

For an introduction to SCTs and how they use pythonwhat, visit the README.
This documentation features:

» A glossary with typical use-cases and corresponding SCT constructs.

* Reference documentation of all actively maintained pythonwhat functions.

* A set of basic and advanced articles that gradually expose you to all of pythonwhat’s functionality and best
practices.

If you are new to writing SCTs for Python exercises, start with the tutorial and work your way through the other
basic articles. The glossary is good to get a quick overview of how all functions play together after you have a basic
understanding. The reference docs become useful when you grasp all concepts and want to look up details on how to
call certain functions and specify custom feedback messages.

Glossary 1

https://github.com/datacamp/pythonwhat

pythonwhat Documentation, Release 2.23.0

2 Glossary

CHAPTER 1

Glossary

This article lists some example solutions. For each of these solutions, an SCT is included, as well as some example
student submissions that would pass and fail. In all of these, a submission that is identical to the solution will pass.

Note: These SCT examples are not golden bullets that are perfect for your situation. Depending on the exercise, you
may want to focus on certain parts of a statement, or be more accepting for different alternative answers.

1.1 Check object

solution
x = 10

sct
Ex () .check_object ('x"') .has_equal_value ()

passing submissions
=5+ 5

=6 + 4

=4; x =y + 6

OOXOX S

1.2 Check function call

solution
import pandas as pd
pd.DataFrame([1, 2, 3], columns=['a'l])

sct
Ex () .check_function ('pandas.DataFrame')\

(continues on next page)

pythonwhat Documentation, Release 2.23.0

(continued from previous page)

.multi(
check_args('data') .has_equal_value(),
check_args ('columns') .has_equal_value ()

passing submissions

pd.DataFrame ([1, 1+1, 3], columns=['a'l])
pd.DataFrame (data=[1, 2, 3], columns=['a'])
pd.DataFrame (columns=['a'], data=[1, 2, 3])

1.3 Check pandas chain (1)

solution

import pandas as pd

df = pd.DataFrame([1l, 2, 3], columns=['a'])
df.a.sum()

sct
Ex () .check_function ("df.a.sum") .has_equal_value ()

1.4 Check pandas chain (2)

pec
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'x', 'y'l})

solution
df .groupby ('b'") .sum()

sct
sig = sig_from_obj("df.groupby ('b").sum")
Ex () .check_correct (

check if group by works

check_function ("df.groupby.sum", signature = sig) .has_equal_value(),
check if group_by called correctly
check_function ("df.groupby") .check_correct (

has_equal_value (func = lambda x,y: x.keys == y.keys),

check_args (0) .has_equal_value ()

passing submissions
df .groupby ('b'") .sum/()
df .groupby (['b"]) .sum()

failing submissions

df # Did you call df.groupby()?

df .groupby ('a') # arg of groupby is incorrect
df.groupby ('b') # did you call df.groupby.sum()?

v

4 Chapter 1. Glossary

pythonwhat Documentation, Release 2.23.0

1.5 Check pandas plotting

pec

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

np.random.seed (42)

df = pd.DataFrame ({'val': np.random.rand(300) })

solution

df .val.plot (kind="hist")
plt.title('my plot")
plt.show ()

plt.clf()

sct
Ex () .check_or (
multi (
check_function('df.val.plot').check_args('kind') .has_equal_value(),
check_function('matplotlib.pyplot.title').check_args(0).has_equal_value ()
)I
override ("df.val.plot (kind="hist', title="'my plot')").check_function('df.val.plot
") .multi(
check_args('kind'") .has_equal_value(),
check_args('title') .has_equal_value ()
) s
override ("df['val'].plot (kind = 'hist'); plt.title('my plot')") .multi (
check_function('df.plot') .check_args('kind') .has_equal_value(),
check_function('matplotlib.pyplot.title') .check_args(0).has_equal_value ()
)I
override ("df['val'].plot (kind="hist', title="'my plot')").check_function('df.plot
") .multi(
check_args('kind'") .has_equal_value(),
check_args('title') .has_equal_value()

)
Ex () .check_function('matplotlib.pyplot.show")
Ex () .check_function('matplotlib.pyplot.clf")

1.6 Check object created through function call

pec
import numpy as np
arr = np.array([l, 2, 3, 4, 5, 61)

solution
result = np.mean(arr)

sct
Ex () .check_correct (
check_object ("result") .has_equal_value(),
check_function ("numpy.mean") .check_args("a") .has_equal_value ()

(continues on next page)

1.5. Check pandas plotting 5

pythonwhat Documentation, Release 2.23.0

(continued from previous page)

passing submissions
result = np.mean(arr)
result = np.sum(arr) / arr.size

1.7 Check DataFrame

solution
import pandas as pd
my_df = pd.DataFrame({"a": [1, 2, 31, "b": [4, 5, 61})

sct
Ex () .check_df ("my_df") .check_keys ("a") .has_equal_value ()

passing submissions
my_df pd.DataFrame ({"a": [1, 1 + 1, 31, "b": [4, 5, 61})
my_df pd.DataFrame ({"b": [4, 5, 61, "a": [1, 2, 31}

1.8 Check printout

solution
x = 3
print (x)

sct
Ex () .has_printout (0)

passing submissions
print (3)

print (1 + 1)

X = 4; print(x - 1)

1.9 Check output

solution
print ("This is weird stuff")

sct
Ex () .has_output (r"This is \w* stuff")

passing submissions

print ("This is weird stuff")
print ("This is fancy stuff")
print ("This is cool stuff")

failing submissions
print ("this is weird stuff")
print ("Thisis weird stuff")

6 Chapter 1. Glossary

pythonwhat Documentation, Release 2.23.0

1.10 Check Multiple Choice

solution (implicit)
3 is the correct answer

sct
Ex () .has_chosen (correct = 3, # 1-base indexed
msgs = ["That's someone who makes soups.",
"That's a clown who likes burgers.",
"Correct! Head over to the next exercise!"])

1.11 Check import

See has_import doc

1.12 Check if statement

See check_if else doc

1.13 Check function definition

See check function_def doc

1.14 Check list comprehensions

See check_list_comp doc

1.10. Check Multiple Choice 7

reference.html#pythonwhat.check_wrappers.has_import
reference.html#pythonwhat.check_wrappers.check_if_else
reference.html#pythonwhat.check_wrappers.check_function_def
reference.html#pythonwhat.check_wrappers.check_list_comp

pythonwhat Documentation, Release 2.23.0

8 Chapter 1. Glossary

CHAPTER 2

Reference

Note:

* check_ functions typically ‘dive’ deeper into a part of the state it was passed. They are typically chained for
further checking.

* has_ functions always return the state that they were intially passed and are used at the ‘end’ of a chain.

2.1 Objects

check_object (state, index, missing_msg=None, expand_msg=None, typestr="variable’)
Check object existence (and equality)

Check whether an object is defined in the student’s process, and zoom in on its value in both student and solution
process to inspect quality (with has_equal_value().

In pythonbackend, both the student’s submission as well as the solution code are executed, in separate
processes. check_object () looks at these processes and checks if the referenced object is available in the
student process. Next, you can use has_equal_value () to check whether the objects in the student and
solution process correspond.

Parameters
* index (str)—the name of the object which value has to be checked.

* missing_msg (str) — feedback message when the object is not defined in the student
process.

* expand msg (str) — If specified, this overrides any messages that are prepended by
previous SCT chains.

Example Suppose you want the student to create a variable x, equal to 15:

pythonwhat Documentation, Release 2.23.0

The following SCT will verify this:

’Ex().check_object("x").has_equal_value() ‘

* check_object () will check if the variable x is defined in the student process.

* has_equal_value () will check whether the value of x in the solution process is the
same as in the student process.

Note that has_equal_value () only looks at end result of a variable in the student process.
In the example, how the object x came about in the student’s submission, does not matter. This
means that all of the following submission will also pass the above SCT:

x = 15
x =12 + 3
X = 3; x += 12

Example As the previous example mentioned, has_equal_value () only looks at the end re-
sult. If your exercise is first initializing and object and further down the script is updating the
object, you can only look at the final value!

Suppose you want the student to initialize and populate a list my_list as follows:

my_list = []
for i in range(20):
if i % 3 ==

my_list.append (i)

There is no robust way to verify whether my_list = [0] was coded correctly in a separate way.
The best SCT would look something like this:

msg = "Have you correctly initialized "my_list 2"
Ex () .check_correct (
check_object ('my_list') .has_equal_value(),
multi (
check initialization: [] or 1ist()
check_or (
has_equal_ast (code = "[]", incorrect_msg = msg),

check_function('list")
)y
check_for_loop () .multi(
check_iter () .has_equal_value(),
check_body () .check_if_else () .multi (
check_test () .multi (
set_context (2) .has_equal_value(),
set_context (3) .has_equal_value ()
) 14
check_body () .set_context (3) .\
set_env(my_list = [0]) .\
has_equal_value (name = 'my_ list'")

10 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

* check_correct () is used to robustly check whether my_11ist was built correctly.

e If my_1ist is not correct, both the initialization and the population code are checked.

Example Because checking object correctness incorrectly is such a common misconception, we’re
adding another example:

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 61})
dff'c']l = [7, 8, 9]

The following SCT would be wrong, as it does not factor in the possibility that the ‘add column
¢’ step could’ve been wrong:

Ex () .check_correct (
check_object ('df'") .has_equal_value(),
check_function('pandas.DataFrame') .check_args (0) .has_equal_value ()

The following SCT would be better, as it is specific to the steps:

verify the df = pd.DataFrame(...) step
Ex () .check_correct (
check_df ('df'") .multi (
check_keys('a') .has_equal_value(),
check_keys ('b') .has_equal_value ()
) 14
check_function('pandas.DataFrame') .check_args (0) .has_equal_value()

verify the df['c'] = [...] step
Ex () .check_df ('df') .check_keys('c') .has_equal_value ()

Example pythonwhat compares the objects in the student and solution process with the == operator.
For basic objects, this == is operator is properly implemented, so that the objects can be effec-
tively compared. For more complex objects that are produced by third-party packages, however,
it’s possible that this equality operator is not implemented in a way you’d expect. Often, for
these object types the == will compare the actual object instances:

pre exercise code
class Number () :
def _ init_ (self, n):
self.n = n

solution
X = Number (1)

sct that won't work

Ex () .check_object () .has_equal_value ()
sct
Ex () .check_object () .has_equal_value (expr_code = 'x.n'")

submissions that will pass this sct
X = Number (1)
Number (2 - 1)

X

The basic SCT like in the previous example will notwork here. Notice how we used the

2.1. Objects 1

pythonwhat Documentation, Release 2.23.0

expr_code argument to _override_ which value has_equal_value() is checking. Instead of
checking whether x corresponds between student and solution process, it’s now executing the
expression x . n and seeing if the result of running this expression in both student and solution
process match.

is_instance (state, inst, not_instance_msg=None)
Check whether an object is an instance of a certain class.

is_instance () can currently only be used when chained from check_object (), the function that is
used to ‘zoom in’ on the object of interest.

Parameters
* inst (class)— The class that the object should have.

* not_instance_msg (str)— When specified, this overrides the automatically generated
message in case the object does not have the expected class.

* state (State) — The state that is passed in through the SCT chain (don’t specify this).

Example Student code and solution code:

import numpy as np
arr = np.array([1, 2, 3, 4, 51])

SCT:

Verify the class of arr
import numpy
Ex () .check_object ('arr') .is_instance (numpy.ndarray)

check_df (state, index, missing_msg=None, not_instance_msg=None, expand_msg=None)
Check whether a DataFrame was defined and it is the right type

check_df () is a combo of check_object () and is_instance () that checks whether the specified
object exists and whether the specified object is pandas DataFrame.

You can continue checking the data frame with check_keys () function to ‘zoom in’ on a particular column
in the pandas DataFrame:

Parameters
¢ index (str) - Name of the data frame to zoom in on.
* missing msg (str)— See check_object ().
* not_instance_msg(str)—See is_instance ().

* expand _msg (str) — If specified, this overrides any messages that are prepended by
previous SCT chains.

Example Suppose you want the student to create a DataFrame my_df with two columns. The
column a should contain the numbers 1 to 3, while the contents of column b can be anything:

import pandas as pd
my_df = pd.DataFrame({"a": [1, 2, 31, "b": ["a", "n", "y"1})

The following SCT would robustly check that:

Ex () .check_df ("my_df") .multi (
check_keys ("a") .has_equal_value(),
check_keys ("b")

12 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

e check_df () checks if my_df exists (check_object () behind the scenes) and is a
DataFrame (is_instance ())

* check_keys ("a") zooms in on the column a of the data frame, and
has_equal_value () checks if the columns correspond between student and so-
lution process.

* check_keys ("b") zooms in on hte column b of the data frame, but there’s no ‘equality
checking’ happening

The following submissions would pass the SCT above:

my_df = pd.DataFrame ({"a": [1, 1 + 1, 3], "b": ["a", "1", "1"]})
my_df = pd.DataFrame ({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 91})

check_keys (state, key, missing_msg=None, expand_msg=None)
Check whether an object (dict, DataFrame, etc) has a key.

check_keys () can currently only be used when chained from check_obJject (), the function that is used
to ‘zoom in’ on the object of interest.

Parameters
* key (str)— Name of the key that the object should have.

* missing msg (str) — When specified, this overrides the automatically generated mes-
sage in case the key does not exist.

* expand_msg (str) — If specified, this overrides any messages that are prepended by
previous SCT chains.

* state (State) — The state that is passed in through the SCT chain (don’t specify this).

Example Student code and solution code:

x = {'a': 2}

SCT:

Verify that x contains a key a
Ex () .check_object ('x") .check_keys('a')

Verify that x contains a key a and a 1is correct.
Ex () .check_object ('x") .check_keys('a') .has_equal_value ()

2.2 Function calls

check_function (state, name, index=0, missing_msg=None, params_not_matched_msg=None, ex-
pand_msg=None, signature=True)
Check whether a particular function is called.
check_function () is typically followed by:
e check_args () to check whether the arguments were specified. In turn, check_args () can be fol-
lowed by has_equal_value () or has_equal_ast () to assert that the arguments were correctly
specified.

* has_equal_value () to check whether rerunning the function call coded by the student gives the same
result as calling the function call as in the solution.

2.2. Function calls 13

pythonwhat Documentation, Release 2.23.0

Checking function calls is a tricky topic. Please visit the dedicated article for more explanation, edge cases and
best practices.

Parameters

* name (st r)—the name of the function to be tested. When checking functions in packages,
always use the ‘full path’ of the function.

* index (int)—index of the function call to be checked. Defaults to 0.

* missing msg (str) — If specified, this overrides an automatically generated feedback
message in case the student did not call the function correctly.

* params_not_matched_msg (str) — If specified, this overrides an automatically gen-
erated feedback message in case the function parameters were not successfully matched.

* expand_msg (str) — If specified, this overrides any messages that are prepended by
previous SCT chains.

* signature (Signature)—Normally, check_function() can figure out what the function
signature is, but it might be necessary to use sig_from_params () to manually build a
signature and pass this along.

* state (State) — State object that is passed from the SCT Chain (don’t specify this).

Examples Student code and solution code:

import numpy as np
arr = np.array([1, 2, 3, 4, 51])
np.mean (arr)

SCT:

Verify whether arr was correctly set in np.mean
Ex () .check_function ('numpy.mean') .check_args('a') .has_equal_value ()

Verify whether np.mean (arr) produced the same result
Ex () .check_function('numpy.mean') .has_equal_value ()

check_args (state, name, missing_msg=None)
Check whether a function argument is specified.

This function can follow check_function () in an SCT chain and verifies whether an argument is specified.
If you want to go on and check whether the argument was correctly specified, you can can continue chaining
with has_equal_value () (value-based check) or has_equal_ast () (AST-based check)

This function can also follow check_function_def () or check_lambda_function () to see if ar-
guments have been specified.

Parameters

* name (st r)—the name of the argument for which you want to check if it is specified. This
can also be a number, in which case it refers to the positional arguments. Named arguments
take precedence.

* missing msg (str) — If specified, this overrides the automatically generated feedback
message in case the student did specify the argument.

* state (State) — State object that is passed from the SCT Chain (don’t specify this).

Examples Student and solution code:

14 Chapter 2. Reference

articles/checking_function_calls.html

pythonwhat Documentation, Release 2.23.0

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
np.mean (arr)

SCT:

Verify whether arr was correctly set 1in np.mean
has_equal_value() checks the value of arr, used to set argument a
Ex () .check_function ('numpy.mean') .check_args('a') .has_equal_value ()

Verify whether arr was correctly set in np.mean
has_equal_ast () checks the expression used to set argument a
Ex () .check_function ('numpy.mean') .check_args('a').has_equal_ast ()

Student and solution code:

def my_power (x) :
print ("calculating sgrt...")
return (X * Xx)

SCT:

Ex () .check_function_def ('my_power') .multi (
check_args('x'") # will fail if student used y as arg
check_args (0) # will still pass 1f student used y as arg

2.3 Output

has_output (state, text, pattern=True, no_output_msg=None)
Search student output for a pattern.

Among the student and solution process, the student submission and solution code as a string, the Ex () state

also contains the output that a student generated with his or her submission.
With has_output (), you can access this output and match it against a regular or fixed expression.
Parameters
e text (str) - the text that is searched for

* pattern (bool)—if True (default), the text is treated as a pattern. If False, it is treated as
plain text.

* no_output_msg (str)— feedback message to be displayed if the output is not found.

Example As an example, suppose we want a student to print out a sentence:

Print the "This is some ... stuff"
print ("This is some weird stuff")

The following SCT tests whether the student prints out This is some weird stuff:

Using exact string matching
Ex () .has_output ("This is some weird stuff", pattern = False)

Using a regular expression (more robust)

(continues on next page)

2.3. Output

15

pythonwhat Documentation, Release 2.23.0

(continued from previous page)

pattern = True 1s the default
msg = "Print out ' "This is some ... stuff'’ to the output, " + \
"fill in ... " with a word you like."

Ex () .has_output (r"This is some \wx stuff", no_output_msg = msqg)

has_printout (state, index, not_printed_msg=None, pre_code=None, name=None, copy=False)
Check if the right printouts happened.

has_printout () will look for the printout in the solution code that you specified with index (0 in this
case), rerun the print () call in the solution process, capture its output, and verify whether the output is
present in the output of the student.

This is more robust as Ex () .check_function ('print') initiated chains as students can use as many
printouts as they want, as long as they do the correct one somewhere.

Parameters

* index (int)—index of the print () call in the solution whose output you want to search
for in the student output.

* not_printed_msg (str) — if specified, this overrides the default message that is gener-
ated when the output is not found in the student output.

* pre_code (str) — Python code as a string that is executed before running the targeted
student call. This is the ideal place to set a random seed, for example.

* copy (bool) — whether to try to deep copy objects in the environment, such as lists, that
could accidentally be mutated. Disabled by default, which speeds up SCTs.

* state (State) — state as passed by the SCT chain. Don’t specify this explicitly.

Example Suppose you want somebody to print out 4:

’print(l, 2, 3, 4)

The following SCT would check that:

’Ex().has_printout(O) ‘

All of the following SCTs would pass:

print
print
print
print

1, 2, 3, 4)
'1 2 3 4")
1, 2, '3 4")

(
(
(
("random"); print(1, 2, 3, 4)

Example Watch out: has_printout () will effectively rerun the print () call in the solution
process after the entire solution script was executed. If your solution script updates the value of
x after executing it, has_printout () will not work.

Suppose you have the following solution:

x = 4
print (x)
X = 6

The following SCT will not work:

Ex () .has_printout (0)

16 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

Why? When the print (x) call is executed, the value of x will be 6, and pythonwhat will look
for the output ‘6’ in the output the student generated. In cases like these, has_printout ()
cannot be used.

Example Inside a for loop has_printout ()

Suppose you have the following solution:

for i in range(5):
print (1)

The following SCT will not work:

Ex () .check_for_loop () .check_body () .has_printout (0)

The reason is that has_printout () can only be called from the root state. Ex (). If you
want to check printouts done in e.g. a for loop, you have to use a check_function(‘print’) chain
instead:

Ex () .check_for_loop () .check_body () .\
set_context (0) .check_function ('print") .\
check_args (0) .has_equal_value ()

has_no_error (state, incorrect_msg="Have a look at the console: your code contains an error. Fix it and
try again!’)
Check whether the submission did not generate a runtime error.

If all SCTs for an exercise pass, before marking the submission as correct pythonwhat will automatically check
whether the student submission generated an error. This means it is not needed to use has_no_error ()
explicitly.

However, in some cases, using has_no_error () explicitly somewhere throughout your SCT execution can
be helpful:

* If you want to make sure people didn’t write typos when writing a long function name.

 If you want to first verify whether a function actually runs, before checking whether the arguments were
specified correctly.

* More generally, if, because of the content, it’s instrumental that the script runs without errors before doing
any other verifications.
Parameters incorrect_msg - if specified, this overrides the default message if the student code
generated an error.

Example Suppose you’re verifying an exercise about model training and validation:

pre exercise code

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn import datasets

from sklearn import svm

iris = datasets.load_iris()
iris.data.shape, iris.target.shape

solution
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.4, random_state=0)

2.3. Output 17

pythonwhat Documentation, Release 2.23.0

If you want to make sure that train_test_split () ran without errors, which would check
if the student typed the function without typos and used sensical arguments, you could use the
following SCT:

Ex () .has_no_error ()

Ex () .check_function('sklearn.model_selection.train_test_split') .multi (
check_args(['arrays', 0]).has_equal_value(),
check_args (['arrays', 0]) .has_equal_value(),
check_args(['options', 'test_size']).has_equal_value(),
check_args (['options', 'random_state']).has_equal_value/()

If, on the other hand, you want to fall back onto pythonwhat’s built in behavior, that checks for
an error before marking the exercise as correct, you can simply leave of the has_no_error ()
step.

2.4 Code

has_code (state, text, pattern=True, not_typed_msg=None)
Test the student code.

Tests if the student typed a (pattern of) text. It is advised to use has_equal_ast () instead of has_code (),
as it is more robust to small syntactical differences that don’t change the code’s behavior.

Parameters
e text (str) - the text that is searched for

* pattern (bool)—if True (the default), the text is treated as a pattern. If False, it is treated
as plain text.

* not_typed_msg (str) — feedback message to be displayed if the student did not type
the text.

Example Student code and solution code:

y=1+2+ 3

SCT:

Verify that student code contains pattern (not robust!!):
Ex () .has_code (r"1\s+x\+2\s*«\+3")

has_import (state, name, same_as=False, not_imported_msg="Did you import ‘{{pkg}}‘?’, incor-
rect_as_msg="Did you import ‘{{pkg}}‘ as ‘{{alias}}?’)
Checks whether student imported a package or function correctly.

Python features many ways to import packages. All of these different methods revolve around the import,
fromand as keywords. has_import () provides arobust way to check whether a student correctly imported
a certain package.

By default, has_import () allows for different ways of aliasing the imported package or function. If
you want to make sure the correct alias was used to refer to the package or function that was imported, set
same_as=True.

Parameters

* name (str) - the name of the package that has to be checked.

18 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

* same_as (bool)—if True, the alias of the package or function has to be the same. Defaults
to False.

* not_imported_msg (str) — feedback message when the package is not imported.
* incorrect_as_msg (str)— feedback message if the alias is wrong.

Example Example 1, where aliases don’t matter (defaut):

solution
import matplotlib.pyplot as plt

sct
Ex () .has_import ("matplotlib.pyplot™)

passing submissions

import matplotlib.pyplot as plt

from matplotlib import pyplot as plt
import matplotlib.pyplot as pltttt

failing submissions
import matplotlib as mpl

Example 2, where the SCT is coded so aliases do matter:

solution
import matplotlib.pyplot as plt

sct
Ex () .has_import ("matplotlib.pyplot", same_as=True)

passing submissions
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt

failing submissions
import matplotlib.pyplot as pltttt

2.5 has_equal_x

has_equal_value (state, incorrect_msg=None, error_msg=None, undefined_msg=None, append=None,
extra_env=None, context_vals=None, pre_code=None, expr_code=None, name=None,
copy=True, func=None, override=None, *, test="value’)
Run targeted student and solution code, and compare returned value.

When called on an SCT chain, has_equal_value () will execute the student and solution code that is

‘zoomed in on’ and compare the returned values.
Parameters

* incorrect_msg (str)— feedback message if the returned value of the expression in the
solution doesn’t match the one of the student. This feedback message will be expanded if it
is used in the context of another check function, like check_if_ else.

* error_msg (str) — feedback message if there was an error when running the targeted
student code. Note that when testing for an error, this message is displayed when none is
raised.

2.5. has_equal_x

19

pythonwhat Documentation, Release 2.23.0

* undefined_msg (str)— feedback message if the name argument is defined, but a vari-
able with that name doesn’t exist after running the targeted student code.

* extra_env (dict) - set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables. You can also use
set_env () for this.

* context_vals (1ist) — set variables which are bound in a for loop to certain values.
This argument is only useful when checking a for loop (or list comprehensions). It contains
a list with the values of the bound variables. You can also use set_context () for this.

* pre_code (str) — the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

* expr_code (str) — If this argument is set, the expression in the student/solution code
will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared. However if the string contains one or
more placeholders ___focus__, they will be substituted by the currently focused code.

* name (str)—If this is specified, the returned value of running this expression after running
the focused expression is returned, instead of the returned value of the focused expression
in itself. This is typically used to inspect the returned value of an object after executing the
body of e.g. a for loop.

* copy (bool) — whether to try to deep copy objects in the environment, such as lists, that
could accidentally be mutated. Disable to speed up SCTs. Disabling may lead to cryptic
mutation issues.

* func (function)— custom binary function of form f(stu_result, sol_result), for equality
testing.

* override - If specified, this avoids the execution of the targeted code in the solution
process. Instead, it will compare the returned value of the expression in the student process
with the value specified in override. Typically used in a SingleProcessExercise
or if you want to allow for different solutions other than the one coded up in the solution.

Example Student code and solution code:

import numpy as np
arr = np.array([1, 2, 3, 4, 51])
np.mean (arr)

SCT:

Verify equality of arr:
Ex () .check_object ('arr') .has_equal_value ()

Verify whether arr was correctly set in np.mean
Ex () .check_function ('numpy.mean') .check_args('a') .has_equal_value()

Verify whether np.mean(arr) produced the same result
Ex () .check_function ('numpy.mean') .has_equal_value ()

has_equal_output (state, incorrect_msg=None, error_msg=None, undefined_msg=None, append=None,
extra_env=None, context_vals=None, pre_code=None, expr_code=None,
name=None, copy=True, func=None, override=None, *, test="output’)
Run targeted student and solution code, and compare output.

20 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

When called on an SCT chain, has_equal_output () will execute the student and solution code that is
‘zoomed in on’ and compare the output.

Parameters

* incorrect_msg (str) - feedback message if the output of the expression in the solution
doesn’t match the one of the student. This feedback message will be expanded if it is used
in the context of another check function, like check_1if else.

* error_msg (str) — feedback message if there was an error when running the targeted
student code. Note that when testing for an error, this message is displayed when none is
raised.

* undefined_msg (str)— feedback message if the name argument is defined, but a vari-
able with that name doesn’t exist after running the targeted student code.

* extra_env (dict) - set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables. You can also use
set_env () for this.

* context_vals (1ist) — set variables which are bound in a for loop to certain values.
This argument is only useful when checking a for loop (or list comprehensions). It contains
a list with the values of the bound variables. You can also use set__context () for this.

* pre_code (str) — the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

* expr_code (str) — If this argument is set, the expression in the student/solution code
will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared. However if the string contains one or
more placeholders ___focus__, they will be substituted by the currently focused code.

* name (str) — If this is specified, the output of running this expression after running the
focused expression is returned, instead of the output of the focused expression in itself. This
is typically used to inspect the output of an object after executing the body of e.g. a for
loop.

* copy (bool) — whether to try to deep copy objects in the environment, such as lists, that
could accidentally be mutated. Disable to speed up SCTs. Disabling may lead to cryptic
mutation issues.

* func (function)— custom binary function of form f(stu_result, sol_result), for equality
testing.

* override - If specified, this avoids the execution of the targeted code in the solution
process. Instead, it will compare the output of the expression in the student process with the
value specified in override. Typically used in a SingleProcessExercise orif you
want to allow for different solutions other than the one coded up in the solution.

has_equal_error (state, incorrect_msg=None, error_msg=None, undefined_msg=None, append=None,
extra_env=None, context_vals=None, pre_code=None, expr_code=None, name=None,

copy=True, func=None, override=None, *, test="error’)
Run targeted student and solution code, and compare generated errors.

When called on an SCT chain, has_equal_error () will execute the student and solution code that is
‘zoomed in on’ and compare the errors that they generate.

Parameters

2.5. has_equal_x 21

pythonwhat Documentation, Release 2.23.0

* incorrect_msg (str)— feedback message if the error of the expression in the solution
doesn’t match the one of the student. This feedback message will be expanded if it is used
in the context of another check function, like check_1if else.

* error_msg (str) — feedback message if there was an error when running the targeted
student code. Note that when testing for an error, this message is displayed when none is
raised.

* undefined_msg (str) — feedback message if the name argument is defined, but a vari-
able with that name doesn’t exist after running the targeted student code.

* extra_env (dict) — set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables. You can also use
set_env () for this.

* context_vals (1ist)— set variables which are bound in a for loop to certain values.
This argument is only useful when checking a for loop (or list comprehensions). It contains
a list with the values of the bound variables. You can also use set_context () for this.

* pre_code (str) — the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

* expr_code (str) — If this argument is set, the expression in the student/solution code
will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared. However if the string contains one or
more placeholders ___focus__, they will be substituted by the currently focused code.

* name (str) — If this is specified, the error of running this expression after running the
focused expression is returned, instead of the error of the focused expression in itself. This
is typically used to inspect the error of an object after executing the body of e.g. a for loop.

* copy (bool) — whether to try to deep copy objects in the environment, such as lists, that
could accidentally be mutated. Disable to speed up SCTs. Disabling may lead to cryptic
mutation issues.

* func (function)— custom binary function of form f(stu_result, sol_result), for equality
testing.

* override — If specified, this avoids the execution of the targeted code in the solution
process. Instead, it will compare the error of the expression in the student process with the
value specified in override. Typically used in a SingleProcessExercise orif you
want to allow for different solutions other than the one coded up in the solution.

has_equal_ast (state, incorrect_msg=None, code=None, exact=True, append=None)
Test whether abstract syntax trees match between the student and solution code.

has_equal_ast () can be used in two ways:

e Asarobust version of has_code (). By setting code, you can look for the AST representation of code
in the student’s submission. But be aware that a and a = 1 won’t match, as reading and assigning are
not the same in an AST. Use ast . dump (ast .parse (code)) to see an AST representation of code.

* As an expression-based check when using more advanced SCT chain, e.g. to compare the equality of
expressions to set function arguments.
Parameters

* incorrect_msg — message displayed when ASTs mismatch. When you specify code
yourself, you have to specify this.

22 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

* code - optional code to use instead of the solution AST.

* exact — whether the representations must match exactly. If false, the solution AST only
needs to be contained within the student AST (similar to using test student typed). Defaults
to True, unless the code argument has been specified.

Example Student and Solution Code:

dict (a = 'value') .keys()

SCT:

all pass

Ex () .has_equal_ast ()

Ex () .has_equal_ast (code = "dict(a = 'value').keys()")

Ex () .has_equal_ast (code = "dict(a = 'value')", exact = False)

Student and Solution Code:

import numpy as np
arr = np.array([l, 2, 3, 4, 51)
np.mean (arr)

SCT:

Check underlying value of arugment a of np.mean:
Ex () .check_function('numpy.mean') .check_args('a') .has_equal_ast ()

Only check AST equality of expression used to specify argument a:
Ex () .check_function('numpy.mean') .check_args('a') .has_equal_ast ()

2.6 Combining SCTs

multi (state, *tests)
Run multiple subtests. Return original state (for chaining).

This function could be thought as an AND statement, since all tests it runs must pass
Parameters

* state — State instance describing student and solution code, can be omitted if used with
Ex()

¢ tests — one or more sub-SCTs to run.

Example The SCT below checks two has_code cases..

Ex () .multi (has_code ('SELECT'), has_code ('WHERE"))

The SCT below uses multi to ‘branch out’ to check that the SELECT statement has both a
WHERE and LIMIT clause..

Ex () .check_node ('SelectStmt', 0) .multi(
check_edge ('where_clause'),
check_edge ('limit_clause')

Example Suppose we want to verify the following function call:

2.6. Combining SCTs

pythonwhat Documentation, Release 2.23.0

round (1.2345, ndigits=2)

The following SCT would verify this, using multi to ‘branch out’ the state to two sub-SCTs:

Ex () .check_function('round') .multi (
check_args (0) .has_equal_value(),
check_args ('ndigits') .has_equal_value ()

check_correct (state, check, diagnose)
Allows feedback from a diagnostic SCT, only if a check SCT fails.

Parameters

* state — State instance describing student and solution code. Can be omitted if used with
Ex().

* check - An sct chain that must succeed.
* diagnose — An sct chain to run if the check fails.

Example The SCT below tests whether students query result is correct, before running diagnostic
SCTs..

Ex () .check_correct (
check_result (),
check_node ('SelectStmt")

Example The SCT below tests whether an object is correct. Only if the object is not correct, will
the function calling checks be executed

Ex () .check_correct (
check_object ('x') .has_equal_value(),
check_function('round') .check_args (0) .has_equal_value ()

check_or (state, *tests)
Test whether at least one SCT passes.

Parameters

* state — State instance describing student and solution code, can be omitted if used with
Ex()

e tests — one or more sub-SCTs to run

Example The SCT below tests that the student typed either ‘SELECT’ or “‘WHERE’ (or both)..

Ex () .check_or(
has_code ('SELECT"),
has_code ('WHERE ")

The SCT below checks that a SELECT statement has at least a WHERE c¢ or LIMIT clause..

Ex () .check_node('SelectStmt', 0).check_or(
check_edge ('where_clause'),
check_edge ('limit_clause')

24 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

Example The SCT below tests that the student typed either ‘mean’ or ‘median’:

Ex () .check_or(
has_code ('mean'),
has_code ('median')

If the student didn’t type either, the feedback message generated by has_code (mean), the
first SCT, will be presented to the student.

check_not (state, *tests, msg)
Run multiple subtests that should fail. If all subtests fail, returns original state (for chaining)

* This function is currently only tested in working with has_code () in the subtests.
 This function can be thought as a NOT (x OR y OR ...) statement, since all tests it runs must fail

 This function can be considered a direct counterpart of multi.

Parameters

* state — State instance describing student and solution code, can be omitted if used with
Ex()

* xtests — one or more sub-SCTs to run
* msg — feedback message that is shown in case not all tests specified in rtests fail.

Example Thh SCT below runs two has_code cases..

Ex () .check_not (
has_code ('INNER"),
has_code ('OUTER"),
incorrect_msg="Don't use ~INNER' or “OUTER"!"

If students use INNER (JOIN) or OUTER (JOIN) in their code, this test will fail.

Example The SCT fails with feedback for a specific incorrect value, defined using an override:

Ex () .check_object ('result') .multi (
check_not (
has_equal_value (override=100),
msg='100 is incorrect for reason xyz.'
) 14
has_equal_value ()

Notice that check_not comes before the has_equal_value test that checks if the student
value is equal to the solution value.

Example The SCT below runs two has_ code cases:

Ex () .check_not (
has_code ('mean'),
has_code ('median'),
msg="'Check your code'

If students use mean or median anywhere in their code, this SCT will fail.

2.6. Combining SCTs 25

pythonwhat Documentation, Release 2.23.0

Note:
» This function is not yet tested with all checks, please report unexpected behaviour.
* This function can be thought as a NOT(x OR y OR ...) statement, since all tests it runs must fail

 This function can be considered a direct counterpart of multi.

2.7 Function/Class/Lambda definitions

check_function_def (state, index=0, typestr="{{ordinal}} node’, missing_msg=None, ex-
pand_msg=None)
Check whether a function was defined and zoom in on it.

Can be chained with check_call (), check_args () and check_body ().
Parameters
¢ index — the name of the function definition.

* typestr — If specified, this overrides the standard way of referring to the construct you’re
zooming in on.

* missing msg - If specified, this overrides the automatically generated feedback message
in case the construct could not be found.

* expand_msg — If specified, this overrides the automatically generated feedback message
that is prepended to feedback messages that are thrown further in the SCT chain.

Example Suppose you want a student to create a function shout_echo ():

def shout_echo (wordl, echo=1):
echo_word = wordl * echo
shout_words = echo_word + '!!!'
return shout_words

The following SCT robustly checks this:

Ex () .check_function_def ('shout_echo') .check_correct (
multi (
check_call("f('hey', 3)").has_equal_value(),
check_call("f('hi', 2)").has_equal_value(),
check_call("f('hi")") .has_equal_value()

)

check_body () .set_context ('test', 1) .multi(
has_equal_value (name = 'echo_word'),
has_equal_value (name = 'shout_words')

Here:

e check_function_def () zooms in on the function definition of shout_echo in both
student and solution code (and process).

e check_correct () isused to

— First check whether the function gives the correct result when called in different ways
(through check_call ()).

26 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

— Only if these ‘function unit tests’ don’t pass, check_correct () will run the
check_body() chain that dives deeper into the function definition body. This chain sets
the context variables - wordl and echo, the arguments of the function - to the values
'test ' and 1 respectively, again while being agnostic to the actual name of these con-
text variables.

Notice how check_correct () isused to great effect here: why check the function definition
internals if the I/O of the function works fine? Because of this construct, all the following
submissions will pass the SCT:

passing submission 1
def shout_echo(w, e=1):
ew = W % e
return ew + "!! !’

passing submission 2
def shout_echo(a, b=1):
return a » b + "!!!"

Example check_args () is most commonly used in combination with check_function () to
verify the arguments of function calls, but it can also be used to verify the arguments specified
in the signature of a function definition.

We can extend the SCT for the previous example to explicitly verify the signature:

msgl = "Make sure to specify 2 arguments!"
msg2 = "don't specify default arg!"
msg3 = "specify a default arg!"
Ex () .check_function_def ('shout_echo') .check_correct (
multi (
check_call("f('hey', 3)").has_equal_value(),
check_call("f('hi', 2)").has_equal_value(),
check_call("f('hi'")") .has_equal_value()
) 14
multi (

has_equal_part_len("args", unequal_msg=1),
check_args (0) .has_equal_part ('is_default', msg=msg2),
check_args ('wordl') .has_equal_part ('is_default', msg=msg2),
check_args (1) .\

has_equal_part ('is_default', msg=msg3) .has_equal_value(),
check_args ('echo') .\

has_equal_part ('is_default', msg=msg3) .has_equal_value(),
check_body () .set_context ('test', 1) .multi (

has_equal_value (name = 'echo_word"),

has_equal_value (name = 'shout_words")

e has_equal_part_len ("args") verifies whether student and solution function defi-
nition have the same number of arguments.

* check_args (0) refers to the first argument in the signature by position, and the chain
checks whether the student did not specify a default as in the solution.

¢ An alternative for the check_args (0) chain is to use check_args ('wordl"') to
refer to the first argument. This is more restrictive, as the requires the student to use the
exact same name.

2.7. Function/Class/Lambda definitions 27

pythonwhat Documentation, Release 2.23.0

* check_args (1) refers to the second argument in the signature by position, and the chain
checks whether the student specified a default, as in the solution, and whether the value of
this default corresponds to the one in the solution.

e The check_args('echo') chain is a more restrictive alternative for the
check_args (1) chain.
Notice that support for verifying arguments is not great yet:

* A lot of work is needed to verify the number of arguments and whether or not defaults are
set.

* You have to specify custom messages because pythonwhat doesn’t automatically generate
messages.

We are working on it!

has_equal_part_1len (state, name, unequal_msg)
Verify that a part that is zoomed in on has equal length.

Typically used in the context of check_function_def ()
Parameters

* name (str) — name of the part for which to check the length to the corresponding part in
the solution.

* unequal_msg (str)— Message in case the lengths do not match.
* state (State) — state as passed by the SCT chain. Don’t specify this explicitly.

Examples Student and solution code:

def shout (word) :
return word + '!!!"

SCT that checks number of arguments:

Ex () .check_function_def ('shout') .has_equal_part_len('args', 'not,
—enough args!"')

check_call (state, callstr, argstr=None, expand_msg=None)
When checking a function definition of lambda function, prepare has_equal_x for checking the call of a user-
defined function.

Parameters

* callstr (str)— call string that specifies how the function should be called, e.g. f{l, a =
2). check_call () will replace £ with the function/lambda you’re targeting.

* argstr (str) — If specified, this overrides the way the function call is refered to in the
expand message.

* expand_msg (str) — If specified, this overrides any messages that are prepended by
previous SCT chains.

* state (State) — state object that is chained from.

Example Student and solution code:

def my_power (x) :
print ("calculating sqgrt...")

return (x * x)

28 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

SCT:

Ex () .check_function_def ('my_power') .multi (
check_call("£(3)") .has_equal_value ()
check_call ("f(3)") .has_equal_output ()

check_class_def (state, index=0, typestr="{{ordinal}} node’, missing_msg=None, expand_msg=None)
Check whether a class was defined and zoom in on its definition

Can be chained with check_bases () and check_body ().
Parameters
¢ index — the name of the function definition.

* typestr - If specified, this overrides the standard way of referring to the construct you’re
zooming in on.

* missing_msg - If specified, this overrides the automatically generated feedback message
in case the construct could not be found.

* expand_msg — If specified, this overrides the automatically generated feedback message
that is prepended to feedback messages that are thrown further in the SCT chain.

Example Suppose you want to check whether a class was defined correctly:

class MyInt (int):
def _ init_ (self, 1i):
super().__init__ (1 + 1)

The following SCT would verify this:

Ex () .check_class_def ('MyInt'") .multi (
check_bases (0) .has_equal_ast (),
check_body () .check_function_def (' _init__ ") .multi(
check_args('self'"),
check_args('i'),
check_body () .set_context (i = 2) .multi (
check_function('super', signature=False),
check_function('super.__init__ ') .check_args(0) .has_equal_
—value ()

)

e check_class_def () looks for the class definition itself.

* With check_bases (), you can zoom in on the different basse classes that the class defi-
nition inherits from.

* With check_body (), you zoom in on the class body, after which you can use other func-
tions such as check_function_def () to look for class methods.

* Of course, just like for other examples, you can use check_correct () where necessary,
e.g. to verify whether class methods give the right behavior with check_call () before
diving into the body of the method itself.

check_lambda_function (state, index=0, typestr="{{ordinal}} node’, missing_msg=None, ex-

pand_msg=None)
Check whether a lambda function was coded zoom in on it.

2.7. Function/Class/Lambda definitions 29

pythonwhat Documentation, Release 2.23.0

Can be chained with check_call (), check_args () and check_body ().
Parameters
* index - the index of the lambda function (0-based).

* typestr — If specified, this overrides the standard way of referring to the construct you’re
zooming in on.

* missing_ msg - If specified, this overrides the automatically generated feedback message
in case the construct could not be found.

* expand_msg — If specified, this overrides the automatically generated feedback message
that is prepended to feedback messages that are thrown further in the SCT chain.

Example Suppose you want a student to create a lambda function that returns the length of an array
times two:

lambda x: len (x) *2

The following SCT robustly checks this:

Ex () .check_lambda_function () .check_correct (

multi (
check_call("£([1])") .has_equal_value(),
check_call("f([1, 2])") .has_equal_value()

) 14
check_body () .set_context ([1, 2, 3]).has_equal_value()

Here:

* check_ lambda_function () zooms in on the first lambda function in both student and
solution code.

e check_correct () is used to

— First check whether the lambda function gives the correct result when called in different
ways (through check_call ()).

— Only if these ‘function unit tests’ don’t pass, check_correct () will run the
check_body() chain that dives deeper into the lambda function’s body. This chain sets
the context variable x, the argument of the function, to the values [1, 2, 3], while
being agnostic to the actual name the student used for this context variable.

Notice how check_correct () isused to great effect here: why check the function definition
internals if the I/O of the function works fine? Because of this construct, all the following
submissions will pass the SCT:

passing submission 1
lambda x: len(x) + len(x)

passing submission 2
lambda y, times=2: len(y) * times

2.8 Control flow

check_if_ else (state, index=0, typestr="{{ordinal}} node’, missing_msg=None, expand_msg=None)
Check whether an if statement was coded zoom in on it.

30 Chapter 2. Reference

pythonwhat Documentation, Release 2.23.0

Parameters
¢ index — the index of the if statement to look for (0 based)

* typestr - If specified, this overrides the standard way of referring to the construct you’re
zooming in on.

* missing_msg - If specified, this overrides the automatically generated feedback message
in case the construct could not be found.

* expand_msg — If specified, this overrides the automatically generated feedback message
that is prepended to feedback messages that are thrown further in the SCT chain.

Example Suppose you want students to print out a message if x is larger than 0:

x =4
if x > 0:
print ("x is strictly positive")

The following SCT would verify that:

Ex () .check_if_else () .multi(
check_test () .multi (
set_env(x = -1).has_equal_value(),
set_env(x = 1) .has_equal_value(),
set_env (x 0) .has_equal_value ()

)
check_body () .check_function ('print', 0).\
check_args ('value') .has_equal_value()

e check_1if_ else () zooms in on the first if statement in the student and solution submis-
sion.

* check_test () zooms in on the ‘test’ portion of the if statement, x > 0 in case of the
solution. has_equal_value () reruns this expression and the corresponding expression
in the student code for different values of x (set with set_env ()) and compare there
results. This way, you can robustly verify whether the if test was coded up correctly. If the
student codes up the condition as 0 < x, this would also be accepted.

* check_body () zooms in on the ‘body’ portion of the if statement, print ("...") in
case of the solution. With a classical check_function () chain, it is verified whether
the if statement contains a function print () and whether its argument is set correctly.

Example In Python, when an if-else statement has an e11 f clause, it is held in the orelse part. In
this sense, an if-elif-else statement is represented by python as nested if-elses. More specifically,
this if-else statement:

if x > 0:

print (x)
elif y > 0:

print (y)
else:

print ('none')

Is syntactically equivalent to:

2.8. Control flow 31

pythonwhat Documentation, Release 2.23.0

if x > 0:
print (x)
else:
if y > 0:
print (y)
else:
print ('none')

The second representation has to be followed when writing the corresponding SCT:

Ex () .check_1if_else () .multi(

check_test (), # zoom in on x > 0
check_body (), # zoom in on print (x)
check_orelse () .check_1if else () .multi (
check_test (), # zoom in on y > 0
check_body (), # zoom in